CAPSTONE FESTIVAL KEY RESULTS. Optimized Design of Crumple Zone on Vehicles

Kenechukwu Ezeifemeelu, Christopher Tagle, Habiba Eldababy

جامعـة نيويورك أبوظـي NYU ABU DHABI 🌾

COMPARISON BETWEEN SQUARE AND ENNEAGONAL TUBES

Model	Mass (g)	Peak Crushing Fore (kN)	Total Energy Absorbed (J)	Specific Energy Absorption (J/g)
Square Tube	38.85	60.32	476.97	12.28
Enneagonal Tube	42.60	<mark>72.79</mark>	967.99	<mark>22.72</mark>

The enneagonal tube possesses a greater SEA and peak crushing force than the square tube,

making it a better design consideration for the longitudinal beam design.

COMPARISON BETWEEN HONEYCOMB-FILLED SQUARE TUBES

Model	Mass (g)	Peak Crushing	Total Energy	Specific Energy
		Fore (kN)	Absorbed (J)	Absorption (J/g)
Constant Thickness	133.04	238.97	1820.84	13.69
3 Layered Honeycomb (Best Design)	133.32	239.37	1849.14	13.87
5 Layered Honeycomb (Best Design)	133.04	238.29	1806.19	13.58

No significant difference in the performance of the honeycomb-filled tubes based on *<u>number of</u>*

layers or difference between the cell wall thickness across layers.

COMPARISON BETWEEN HONEYCOMB-FILLED SQUARE & ENNEAGONAL TUBES

Model	Mass (g)	Peak Crushing Fore (kN)	Total Energy Absorbed (J)	Specific Energy Absorption (J/g)
5 Layered Honeycomb (Best Design) + Square Tube	133.04	238.29	1806.19	13.58
5 Layered Honeycomb (Best Design) + Enneagonal Tube	173.26	<mark>342.72</mark>	4788.35	<mark>27.63</mark>

The honeycomb-filled enneagonal tube possesses <u>a greater SEA and peak crushing force</u>, making it a better design consideration for the longitudinal beam design.

Moreover, in the enneagonal design, the addition of the honeycomb filling increases peak crushing force by 371% and SEA by 22%