Civil	Computer	General	Mechanical

Optimized Design of Crumple Zone on Vehicles

جامعـة نيويورك أبوظبي **NYU ABU DHABI**

> ENGINEERING DIVISION

Christopher Tagle, Habiba Eldababy, Kenechukwu Ezeifemeelu

PROBLEM DEFINITION

This design project aims to modify the longitudinal beam component of crumple zones in cars to be more lightweight while maintaining safety through sufficient energy absorption, leading to reduced CO₂ emissions.

Figure 1. Crumple Zone of Vehicle Frontal Structure with Force Paths

CONSTRAINTS

1. Computational Time and Expense

DESIGN DEVELOPMENT

Figure 7. Enneagonal Tube

TESTING CRITERIA

1.

2.

Enneagonal tubes (Figure 7) : Nine-sided tubes

ANSYS Simulations

(Nonlinear Explicit Dynamics

of Tube, Foam, Honeycomb)

Model Verified Comparing

with Literature

Force-Displacement Curves

Peak Crush Force and Energy

Absorption Calculated

- Layered honeycomb filling (Figure 8): Inner layers contain thinner cell walls and outer layers contain thicker cell walls
- Functionally graded honeycomb filling (Figure 9): Maximum thickness at corners of each honeycomb cell

Longitudinal Beam

Optimization

Figure 10. Testing Process Flowchart

Tube Structures

Compressive Testing

Force-Displacement Curves

Peak Crush Force and Energy

Absorption Calculated

RESULTS & TEST DATA

8.5364 Max 7.5879 6.6394 5.691 4.7425 3.794 2.8455 1.897 0.94849 0 Min

Figure 11. Deformation Before Failure

Figure 12. Deformation just after Failure

- 2. Use of Conservative Elastic-Perfectly Plastic Material Model (*Figure 4*)
- 3. 3D Printing Limitations Regarding Resolution and Material

Symmetry in a Tube Model

Material Choice

Beam Shape

Beam Filling

Design Process

(Compressive

Testing - ANSYS

& Physical)

Low Cost

Light Weight

High SEA

Figure 2. Longitudinal Beam Design

Considerations

(EPP) Material Model

PROPOSED DESIGN

- Honeycomb-filled and foam-filled longitudinal beam (Figure 5d)
- Aluminum alloys and polyurethane foam are optimal materials •
- FEA simulations and experimental data has shown significant increases in specific energy absorption (SEA) and peak crush force (PCF) from fillings (Figure 6)

AY:2022-2023, Senior Design Capstone Project I & II, Capstone Coordinator: Pradeep George, Capstone Advisor: Mostafa Mobasher

DISCUSSION

- Both honeycomb-filled and empty enneagonal tubes outperform square tubes in PCF and SEA significantly.
- FEA simulation showed negligible benefit in SEA and PCF in functionally grading honeycomb cell wall thickness or layered designs.

ACKNOWLEDGEMENTS Thank you to Prof. Mostafa Mobasher, Prof. Pradeep George, Dr. Oraib Al-Ketan, Eyob Mengiste, Prof. Khaled Shahin, and Jorge Navarrette for your guidance and support.