
Tensorflow vs. PyTorch
Prediction Comparisons
Update Date: 15 June, 2023

2

Optimizer Definitions

Tensorflow

PyTorch

3

http://man.hubwiz.com/docset/TensorFlow.docset/Contents/Resources/Documents/api_d

ocs/python/tf/train/AdamOptimizer.html

Tensorflow: Adam Initialization

http://man.hubwiz.com/docset/TensorFlow.docset/Contents/Resources/Documents/api_docs/python/tf/train/AdamOptimizer.html
http://man.hubwiz.com/docset/TensorFlow.docset/Contents/Resources/Documents/api_docs/python/tf/train/AdamOptimizer.html

4

● Completed the training and derived prediction contours using both
Tensorflow and PyTorch and also plotted them side by side.

● In calculating the error in non-local equivalent strain contour, I used the
formula below due to the fact that errors in the Pytorch predictions are the
reason for this investigation:

5

● Initialized with Weights and Biases generated with Tensorflow approach.
● The above are the predictions for a trained 8 x 8 Neural Network after 5000 ADAM + L-

BFGS

Error in Non-Local
Equivalent Strain Contour

Prediction Contour
Generated Using PyTorch

Prediction Contour
Generated Using

Tensorflow

Folder with generated matlab figure (.fig) and .png file:
Prediction Contours

https://drive.google.com/drive/folders/1tS497HUXg5EXD1z9K_fLsDgna0J1Aapi?usp=drive_link

6

● Initialized with Weights and Biases generated with Tensorflow approach.
● The above are the predictions for a trained 16 x 16 Neural Network after 5000 ADAM + L-

BFGS

Error in Non-Local
Equivalent Strain Contour

Prediction Contour
Generated Using PyTorch

Prediction Contour
Generated Using

Tensorflow

Folder with generated matlab figure (.fig) and .png file:
Prediction Contours

https://drive.google.com/drive/folders/1tS497HUXg5EXD1z9K_fLsDgna0J1Aapi?usp=drive_link

7

● Initialized with Weights and Biases generated with PyTorch approach.
● The above are the predictions for a trained 8 x 8 Neural Network after 5000 ADAM + L-

BFGS

Error in Non-Local
Equivalent Strain Contour

Prediction Contour
Generated Using PyTorch

Prediction Contour
Generated Using

Tensorflow

Folder with generated matlab figure (.fig) and .png file:
Prediction Contours

https://drive.google.com/drive/folders/1tS497HUXg5EXD1z9K_fLsDgna0J1Aapi?usp=drive_link

8

● Initialized with Weights and Biases generated with PyTorch approach.
● The above are the predictions for a trained 16 x 16 Neural Network after 5000 ADAM + L-

BFGS

Error in Non-Local
Equivalent Strain Contour

Prediction Contour
Generated Using PyTorch

Prediction Contour
Generated Using

Tensorflow

Folder with generated matlab figure (.fig) and .png file:
Prediction Contours

https://drive.google.com/drive/folders/1tS497HUXg5EXD1z9K_fLsDgna0J1Aapi?usp=drive_link

Tensorflow vs. PyTorch
Prediction Comparisons
Update 2
Update Date: 22 June, 2023

10

Adam Optimizer Parameters

Cite:
https://www.geeksforgeeks.org
/intuition-of-adam-optimizer/

Adam Optimizer Parameters
for Tensorflow

Adam Optimizer Parameters
for Pytorch

https://www.geeksforgeeks.org/intuition-of-adam-optimizer/
https://www.geeksforgeeks.org/intuition-of-adam-optimizer/

11

Weights between Hidden Layer 1 and Layer 2 for an 8x8 Network using Initial
Weights and Biases Generated from Tensorflow

Weight Contour with Same Initialized Optimizer Parameters
It: 0

12

Weights between Hidden Layer 1 and Layer 2 for an 8x8 Network using Initial
Weights and Biases Generated from Tensorflow

Weight Contour with Same Initialized Optimizer Parameters
It: 50

13

Weights between Hidden Layer 1 and Layer 2 for an 8x8 Network using Initial
Weights and Biases Generated from Tensorflow

Weight Contour with Same Initialized Optimizer Parameters
It: 1000

Tensorflow vs. PyTorch
Scaling Factor Error

Update Date: 4 July, 2023

15

In Pytorch, a scaling factor was introduced to the inputs of the neural network and later
removed when storing the predictions as seen in the code below.

Problem Definition: Trivial Solutions

Scaling inputs up:

Scaling saved predictions back down:

16

This resulted in most trivial solutions in
Pytorch as observed below for
different scaling factors used.

● I tried a scaling factor of 1, 10, 100.

● All 8x8 networks were run for
5000 Adam Epochs + L-BFGS.

● All networks were initialized with
the same weights and biases.

● Problem: Prediction Contours were
trivial as seen in the right Figure

Problem Definition: Trivial Solutions

17

On closer inspection, two errors were noticed:

1) It was seen that only the e_local inputs were scaled up by the e_local_factor. The
x, y and g inputs were not scaled.

● In this code, only the element with index [:, : ,10] (the e_local variable) was scaled.

● The x, y and g variables were indexed [:, : ,0], [:, : ,1] and [:, : ,2] respectively and not scaled.

● As such, the code was rewritten to apply to the scale factor to all input variables.

Problem Definition: Trivial Solutions

18

On closer inspection, two errors were noticed:

2) The elocal input values in the .mat file for Pytorch were 0.1 times less than than
the elocal input values in the .csv file for Tensorflow.

● The code printed out the raw data values from the input files of Tensorflow and
Pytorch. The difference is highlighted below.

● As such, before any scale factor is applied, the values of the elocal in the .mat file
should be multiplied by 10.

Problem Definition: Trivial Solutions

19

The code was fixed and the same
prediction contours were created as
referenced in slide 16.

● Result:

● Prediction Contours for Pytorch
resulted in non-trivial solutions.

● Addition of a scale factor
compromises accuracy, but
makes solution faster.

● Error Plot btw Tensorflow and
Pytorch (Scale 1) can be observed
in Slide 7

Problem Definition: Trivial Solutions

Tensorflow vs. PyTorch
Investigation on Gradients

Update Date: 27 June, 2023

21

(Kingma et. al) https://arxiv.org/pdf/1412.6980.pdf

Tensorflow: Adam Initialization

Parameters (theta) refers to the
elements in the weight and biases
matrices.

gt refers to the partial derivative of
the loss function w.r.t. To the
weights (w)/biases (b) at time t.

https://arxiv.org/pdf/1412.6980.pdf

22

Both platforms initialize the moment estimates as:
mt = [0], vt = [0]

A [4,1,1] Neural Network was created:
● Both Pytorch and Tensorflow were initialized with the same weights and biases

● After one epoch (t=1), the weights between the input layer and the first hidden layer (one
neuron) were extracted for comparison.

● After one epoch, the gradients () computed to derive these weights were also
extracted for comparison.

● Using this gradient, the weights at t=1 were calculated on MATLAB using the
mathematical formula from the paper (Kingma et. al). Maximum error of each platform’s
weights at t=1 was -0.003%.

● Hypothesis: The result show that the differences in the weights (or biases) after one
iteration can be attributed to different gradients being computed in Tensorflow and
Pytorch.

First Study: Observation btw Tensorflow and Pytorch

23

TENSORFLOW

Weights(t=0) Tensorflow

Gradients

Weights(t=1)

Calculated from MATLAB

Weights(t=1)

Calculated from Tensorflow

Error(%)

0.88782865 1.1028266E+00 0.88682865 0.88682866 0.000

0.06018033 -6.1464891E+00 0.06118033 0.06118033 0.000

-0.46538195 -6.9716954E-01 -0.46438195 -0.46438196 0.000

-0.49303034 -2.0500580E-05 -0.49203083 -0.49204552 -0.003

PYTORCH

Weights(t=0) Pytorch

Gradients

Weights(t=1)

Calculated from MATLAB

Weights(t=1)

Calculated from Pytorch

Error(%)

0.88782865 1.5916174E-02 0.88682865 0.88682866 0.000

0.06018033 2.2873601E-01 0.05918033 0.05918033 0.000

-0.46538195 2.9203158E-02 -0.46638195 -0.46638194 0.000

-0.49303034 7.0351894E-07 -0.49401632 -0.49401632 0.000

24

Next Study:
● For a [4,4,1] Neural Network with same initial weights & biases
● 50 epochs

Method
● For each iteration, the gradients of weights and biases computed in Tensorflow for each

iteration were saved.

● In the source code of Pytorch Adam Optimizer, these Tensorflow gradients were used in
place of the gradients computed.

Results:
● When the gradients were set to be the same, we obtained the same weights for the first 3

out of 4 rows of weights with extremely close values in the fourth row.

● When the gradients were set to be the same, we obtained the same biases throughout.

Second Study: Observation btw Tensorflow and Pytorch

25

At It 0:
Initialized
with Same
Weights and
Biases

At It 0:
Same
Weights and
Biases

Initialization

26

At It 50:
With Same
Gradients

At It 50:
With Platform
(Different)
Computed
Gradients

Only difference
is in this row

Slight deviation
in all cells

27

28

At It 50:
With Same
Gradients

At It 50:
With Platform
(Different)
Computed
Gradients

Slight deviation
in all values

Similar to at least
5 sig fig

Tensorflow vs. PyTorch
Investigation on Pytorch Adam Gradients and
Automatic Differentiation

Update Date: 9 July, 2023

31

Problem Description: The past update showed that when the tensorflow values for the adam
optimizer gradients (g(t)) were set in pytorch, it produced almost similar results (last row for
the weights showed some deviation at 5 sig. fig.)

Therefore, as of now, the following values are the same:
● Initial Weights and Biases
● Adam Optimizer Gradients at every iteration

However, the values derived in the loss function were observed to be different despite being
mathematically similar due to differences in the derivatives calculated.

Current Loss Function:

Investigation of Gradient Computation in Tensorflow and Pytorch

32

1. A 4,1,1, Neural Network was created and initialized with the same weights and biases.
Adam Training was run for 5000 epochs.

1. Only one set of inputs were used:
data: [x, y, g, elocal] = [2, 3, 8, 5]

1. Loss function was simplified to not include differentiation.
enon_local_true = 11

1. The maps of the weights and biases (between the input layer and hidden layer) were
printed for every 1000 epochs following these 2 procedures:

a. First Method: Each program was allowed to generate maps and predictions using
the Adam Optimizer Gradients of that program

b. Second Method: The Tensorflow Adam Optimizer Gradients (g(t)) were set in
Pytorch

Experiment 1

33

Method 1: Tensorflow and Pytorch were allowed to generate maps and predictions using the
Adam Optimizer Gradients of that platform.

After 5000 epochs, the weight contour map was generated between the input layer and
hidden layer:

Experiment 1: Method 1

Weights Contour Maps (Same values)

Biases Contour Maps (Same values)

34

Method 2: The Tensorflow Adam Optimizer Gradients (g(t)) were set in Pytorch

After 5000 epochs, the weight contour map was generated between the input layer and
hidden layer:

Experiment 1: Method 2

Weights Contour Maps (Same values)

Biases Contour Maps (Same values)

35

1. In this simple neural network, the same biases and weights were computed in Pytorch
despite the method used in training the networks (Method 1 vs Method 2).

1. The Predictions derived were also
similar as shown here:

1. For further analysis, the Adam
Optimizer Gradients for each neural
network was extracted at 5000
epochs and compared.

Experiment 1: Discussion

Tensorflow

Predictions

Pytorch

Predictions

Error (%)

Method 1 8.3652573 8.3652334 0.00029

Method 2 8.3652573 8.3652229 0.00041

Tensorflow

Gradients

Pytorch Gradients Error (%)

Weights -8.28680E-04 -8.28680E-04 0.0000

-1.24302E-03 -1.24302E-03 0.0000

-3.31471E-03 -3.31473E-03 -0.0006

-2.07170E-03 -2.07171E-03 -0.0005

Biases -4.14340E-04 -4.14340E-04 0.0000

36

1. The results of experiment 1 hinted that the Adam Optimizer functions of both
Tensorflow and Pytorch are correctly executing the same mathematical formula.

1. I returned to the loss function below and decided to print out the values of the
variables that comprise the function to note differences.

1. To obtain results, a 4,1,1, Neural Network was created and initialized with the same
weights and biases. Adam Training was run for 5000 epochs.

1. Only one set of inputs for each file was used:
data: [x, y, g, elocal] = [0.5, 0.5, 8, 1.4 E-06]
data_lrb: [x, y, g, elocal] = [0, 0, 8, 1.8 E-06]
data_btb: [x, y, g, elocal] = [0, 0, 8, 1.8 E-06]

Experiment 2

37

At Adam Epoch = 1

Description of Variable Tensorflow Values Pytorch Values

Adam Predictions 6.690440E-01 6.690439E-01

dee/dxx Second-order derivative of nonlocal strain

prediction w.r.t. the x-coordinate
-2.019621E-06 0

dee/dyy Second-order derivative of nonlocal strain

prediction w.r.t. the y-coordinate
-2.992257E-06 0

de/dx First-order derivative of nonlocal strain prediction

(lrb nodes) w.r.t. the x-coordinate
2.078373E-06 0

de/dy First-order derivative of nonlocal strain prediction

(btb nodes) w.r.t. the y-coordinate
-2.529810E-06

0

Loss (Python) 6.690874E-01 6.690425E-01

Loss (MATLAB) 6.690873E-01 6.690425E-01

Error Check (%) -0.00001 0

38

At Adam Epoch = 5000

Description of Variable Tensorflow Values Pytorch Values

Adam Predictions 2.009869E-04 -3.733933E-04

dee/dxx Second-order derivative of nonlocal strain

prediction w.r.t. the x-coordinate
-1.084453E-09 0

dee/dyy Second-order derivative of nonlocal strain

prediction w.r.t. the y-coordinate
-9.466578E-09 0

de/dx First-order derivative of nonlocal strain prediction

(lrb nodes) w.r.t. the x-coordinate
4.657715E-09 0

de/dy First-order derivative of nonlocal strain prediction

(btb nodes) w.r.t. the y-coordinate
-1.376145E-08 0

Loss (Python) 1.996897E-04 3.747933E-04

Loss (MATLAB) 1.996897E-04 3.747933E-04

Error Check (%) -0.00001 0

39

The automatic differentiation in Pytorch is yielding zero values.

Below shows that the weight and bias maps for Tensorflow and Pytorch deviated at 5000
epochs despite being initialized with the same values.

Experiment 2: Discussion

At Epoch 0 At Epoch 5000

40

Research Question:
● Could the Pytorch automatic differentiation be responsible for different weights and

biases contour maps?

Possible Next Steps:
● While leaving Pytorch Adam Gradients untouched, I would input the derivatives from

Tensorflow into Pytorch to see if it would now yield similar maps and predictions.
● Read online on errors encountered with pytorch automatic differentiation that yielded

zero values.

Next Steps

41

42

43

44

45

1. Documentation for tf.gradients() function -

https://github.com/tensorflow/tensorflow/blob/v2.13.0/tensorflow/python/ops/gradient

s_impl.py#L172-L315

1. Documentation for for torch.autograd.grad function -

https://pytorch.org/docs/stable/_modules/torch/autograd.html#grad

https://github.com/tensorflow/tensorflow/blob/v2.13.0/tensorflow/python/ops/gradients_impl.py#L172-L315
https://github.com/tensorflow/tensorflow/blob/v2.13.0/tensorflow/python/ops/gradients_impl.py#L172-L315
https://pytorch.org/docs/stable/_modules/torch/autograd.html#grad

	Slide 1: Tensorflow vs. PyTorch Prediction Comparisons Update Date: 15 June, 2023
	Slide 2: Optimizer Definitions
	Slide 3: Tensorflow: Adam Initialization
	Slide 4: Completed the training and derived prediction contours using both Tensorflow and PyTorch and also plotted them side by side. In calculating the error in non-local equivalent strain contour, I used the formula below due to the fact that errors i
	Slide 5: Initialized with Weights and Biases generated with Tensorflow approach. The above are the predictions for a trained 8 x 8 Neural Network after 5000 ADAM + L-BFGS
	Slide 6: Initialized with Weights and Biases generated with Tensorflow approach. The above are the predictions for a trained 16 x 16 Neural Network after 5000 ADAM + L-BFGS
	Slide 7: Initialized with Weights and Biases generated with PyTorch approach. The above are the predictions for a trained 8 x 8 Neural Network after 5000 ADAM + L-BFGS
	Slide 8: Initialized with Weights and Biases generated with PyTorch approach. The above are the predictions for a trained 16 x 16 Neural Network after 5000 ADAM + L-BFGS
	Slide 9: Tensorflow vs. PyTorch Prediction Comparisons Update 2 Update Date: 22 June, 2023
	Slide 10: Adam Optimizer Parameters
	Slide 11: Weight Contour with Same Initialized Optimizer Parameters It: 0
	Slide 12: Weight Contour with Same Initialized Optimizer Parameters It: 50
	Slide 13: Weight Contour with Same Initialized Optimizer Parameters It: 1000
	Slide 14: Tensorflow vs. PyTorch Scaling Factor Error Update Date: 4 July, 2023
	Slide 15: In Pytorch, a scaling factor was introduced to the inputs of the neural network and later removed when storing the predictions as seen in the code below.
	Slide 16: This resulted in most trivial solutions in Pytorch as observed below for different scaling factors used. I tried a scaling factor of 1, 10, 100. All 8x8 networks were run for 5000 Adam Epochs + L-BFGS. All networks were initialized with the
	Slide 17: On closer inspection, two errors were noticed: 1) It was seen that only the e_local inputs were scaled up by the e_local_factor. The x, y and g inputs were not scaled. In this code, only the element with index [:, : ,10] (the e_local variable)
	Slide 18: On closer inspection, two errors were noticed: 2) The elocal input values in the .mat file for Pytorch were 0.1 times less than than the elocal input values in the .csv file for Tensorflow. The code printed out the raw data values from the inp
	Slide 19: The code was fixed and the same prediction contours were created as referenced in slide 16. Result: Prediction Contours for Pytorch resulted in non-trivial solutions. Addition of a scale factor compromises accuracy, but makes solution faste
	Slide 20: Tensorflow vs. PyTorch Investigation on Gradients Update Date: 27 June, 2023
	Slide 21: Tensorflow: Adam Initialization
	Slide 22: First Study: Observation btw Tensorflow and Pytorch
	Slide 23
	Slide 24: Second Study: Observation btw Tensorflow and Pytorch
	Slide 25: At It 0: Initialized with Same Weights and Biases
	Slide 26: At It 50: With Same Gradients
	Slide 27
	Slide 28: At It 50: With Same Gradients
	Slide 30: Tensorflow vs. PyTorch Investigation on Pytorch Adam Gradients and Automatic Differentiation Update Date: 9 July, 2023
	Slide 31: Investigation of Gradient Computation in Tensorflow and Pytorch
	Slide 32: Experiment 1
	Slide 33: Experiment 1: Method 1
	Slide 34: Experiment 1: Method 2
	Slide 35: Experiment 1: Discussion
	Slide 36: Experiment 2
	Slide 37
	Slide 38
	Slide 39: Experiment 2: Discussion
	Slide 40: Next Steps
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

