Tensorflow vs. PyTorch
Prediction Comparisons

Update Date: 15 June, 2023



Optimizer Definitions

self.optimizer = tf.contrib.opt.ScipyoptimizerInterface(self.los:
method =

' 50,

! 9.000001 * np.finfo(float
self.optimizer Adam = tf.train.AdamOptimizer(learning rate = learning_rate)
self.train_op Adam = self.optimizer Adam.minimize(self.loss)

Tensorflow

self.optimizer LBFGS = torch.optim.LBFGS(
self.dnn.parameter
1r 0.001,
max_iter LBFGS_epochs,
max_eval LBFGS _epochs * 1.25,

history size 5000,

tolerance grad le-7,

tolerance change 9.000001 * np.ftinfo(float)
line_search _fn strong_wolfe™)

self.optimizer Adam = torch.optim.Adam(self.dnn.parameter ~ = Adam_1r) F3)/1_()r(:f]




Tensorflow: Adam Initialization

» learning_rate: A Tensor or a floating point value. The learning rate.

betal : Afloat value or a constant float tensor. The exponential decay rate for the init  (

1st moment estimates. .
learning rate=6.001,

beta2 : Afloat value or a constant float tensor. The exponential decay rate for the betal=0.9
2nd moment estimates. ’
beta2=6.999,

epsilon=1e-08,
use locking=False,
name="Adam’

epsilon : A small constant for numerical stability. This epsilon is "epsilon hat" in
the Kingma and Ba paper (in the formula just before Section 2.1), not the epsilon
in Algorithm 1 of the paper.

» use_locking: If True use locks for update operations.

« name : Optional name for the operations created when applying gradients.
Defaults to "Adam".

http://man.hubwiz.com/docset/TensorFlow.docset/Contents/Resources/Documents/api d
ocs/python/tf/train/AdamOptimizer.html
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e Completed the training and derived prediction contours using both
Tensorflow and PyTorch and also plotted them side by side.

e |n calculating the error in non-local equivalent strain contour, | used the
formula below due to the fact that errors in the Pytorch predictions are the
reason for this investigation:

~ ~ 2
(Epred, Tensorflow — €p,yeq, Pytorch)

€,.0q, Tensorflow ’
p
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Adam Optimizer Parameters

Mathematical Aspect of Adam Optimizer

Taking the formulas used in the above two methods, we get

my = Bimy—1 + (1 — 5y) [M } vy = Pavi—1 + (1 — Ba2) {_]2

'wt

Parameters Used :

1. € = a small +ve constant to avoid 'division by @' error when (v, -> ©@). (1@°
)

2. B1 & B2 = decay rates of average of gradients in the above two methods. (B =

0.9 & B, = 8.999) Cite:

https://www.geeksforgeeks.org

3. a — Step size parameter / learning rate (©.001) /intuition-of-adam-optimizer/

Adam Optimizer Parameters Adam Optimizer Parameters
for Tensorflow for Pytorch

self.optimizer Adam = tf.train.AdamOptimizer(learning_rate = learning_rate, self.optimizer_Adam = torch.optim.Adam(self.dnn.parameters(),
betal=6.%, Ir = ﬁdam_lr

name="Adam" )


https://www.geeksforgeeks.org/intuition-of-adam-optimizer/
https://www.geeksforgeeks.org/intuition-of-adam-optimizer/

Weight Contour with Same Initialized Optimizer Parameters
it: 0

Tensorflow Epoch: 0 PyTorch Adam Training Epoch:0

0.294 0.426 . 0.294 0.426
0.539  0.32 0.539 032

0.383 0.542 . 0.383 0.542

0.443 0.637 0.47 0.443 0.637 0.47

0.408 0.428 0.328 0.408 0.428 0.328

Layer 2 Layer 2

Weights between Hidden Layer 1and Layer 2 for an 8x8 Network using Initial
Weights and Biases Generated from Tensorflow
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Weight Contour with Same Initialized Optimizer Parameters

it: 50

Tensorflow Epoch: 50

0.525 0.34

0.379 0.568

0.448 0.643 0472

0.416 0.402 0313

Layer 2

PyTorch Adam Training Epoch:50

0.29 0.411

0.525 0.334

0.379 0.556

0.443 0.639 0474

0.418 0.409 0.318

Layer 2

Weights between Hidden Layer Tand Layer 2 for an 8x8 Network using Initial

NYU

Weights and Biases Generated from Tensorflow
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Weight Contour with Same Initialized Optimizer Parameters
It: 1000

Tensorflow Epoch: 1000

PyTorch Adam Training Epoch:1000

0.298 0.421 0

0.484 0.323 1 0.499 0.323

0.398 0579 240382 0.568

— 3
o
>
m
— 4 -
0.462 0.628 0.37 5 0.448 0.631 0442
0.418 0.324 0.328 6 0.413 0.411 0.336
7
0 1 2 3 4 5 6 7
Layer 2 Layer 2

Weights between Hidden Layer 1and Layer 2 for an 8x8 Network using Initial
= Weights and Biases Generated from Tensorflow
NYU
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Tensorflow vs. PyTorch
Scaling Factor Error

Update Date: 4 July, 2023



Problem Definition: Trivial Solutions

In Pytorch, a scaling factor was introduced to the inputs of the neural network and later
removed when storing the predictions as seen in the code below.

Saaling inpuls upe

All_TrainingData_StrB10©_GP_np[:,:,10€] All_TrainingData_StrB10©_GP_np[:,:,10] * elocalfactor

All_TrainingData_StrB1e©_nodeslrb_np[:,:,10] All TrainingData_StrB1ee_nodeslrb_np[:,:,18] * elocalfactor
All TrainingData_StrB1@@ _nodesbtb _np[:,:,10] All TrainingData_StrB1e@_nodesbtb _np[:,:,10] * elocalfactor

Soading soved prediictions bodk dowr

x = predictions.detach().cpu().numpy()

with open(prediction_file, 'w') as f:
for i in range(64€90):

f.write(str(float(x[i])/elocalfactor))
f.write('\n")

NYU s



Problem Definition: Trivial Solutions

This resulted in most trivial solutions in
Pytorch as observed below for
different scaling factors used.

e |tried ascaling factor of 1,10, 100.

e All 8x8 networks were run for
5000 Adam Epochs + L-BFGS.

e All networks were initialized with
the same weights and biases.

e Prablem® Prediction Contours were
trivial as seen in the right Figure

NYU

100

80

60

40

20

0

100

80

60

40

20

0

Coarse Mesh - Loadfactor = 0.82 8-8-5000
Initialized By Pytorch

Tensorflow €,,eq %1073 PyTorch Sc: 1 €,eq

25 100

9 80

1.5 60
/ 1w
20

__II &
. 0

0 20 40 60 80 100 0 20 40 60 80 100
PyTorch Sc: 10 €,,.q4 x107% PyTorch Sc: 100 €p,cq

0 20 40 60 80 100 0 20 40 60 80 100

%1073
2.5



Problem Definition: Trivial Solutions

On closer inspection, two errors were noticed:

1) It was seen that only the e_local inputs were scaled up by the e_local_factor. The
X, y and g inputs were not scaled.

e Inthiscode, only the element with index [;, :,10] (the e_local variable) was scaled.
e The X, yand g variables were indexed [;,:,0], [;,: 1] and [, : ,2] respectively and not scaled.

e Assuch, the code was rewritten to apply to the scale factor to all input variables.

All TrainingData_StrB1e@_GP_np[:,:,10] All TrainingData_StrB10@_GP_np[:,:,10] * elocalfactor

All TrainingData_StrB10@_nodeslrb _np[:,:,10] = All TrainingData_StrB1©6@_nodeslrb_np[:,:,18] * elocalfactor
All TrainingData_StrB10@_nodesbtb_np[:,:,18] = All_TrainingData_StrB1©@_nodesbtb_np[:,:,18] * elocalfactor
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Problem Definition: Trivial Solutions

On closer inspection, two errors were noticed:

2) The elocal input values in the .mat file for Pytorch were 0.1 times less than than
the elocal input values in the .csv file for Tensorflow.

e The code printed out the raw data values from the input files of Tensorflow and
Pytorch. The difference is highlighted below.

e Assuch, before any scale factor is applied, the values of the elocal in the .mat file

should be multiplied by 10.

(L[ X y g elocal 1]
[[[5.28312163e-01 5.28312163e-01 8.00000000e+€0 1.41774367e-07]]

u3) C:\Users\kee30l\Documents\CSM\Pvtorch vs_ T
xcoord ycoorg g elocal

9.528312 9.528312 8.¢ 1.417744e-06 [[1.97168784e+00 5.28312163e-01 8.00000000e+00 8.18238599e-08]]

1.971688 ©.528312 8.2 8.182386e-07
0.528312 1.971688 8., 8.158908e-07

S~ N

NYU o

[[5.28312163e-01 1.97168784e+00 8.00000000e+0Q 8.15890766e-08]]



Problem Definition: Trivial Solutions

The code was fixed and the same
prediction contours were created as
referenced in slide 16.

Result:

Prediction Contours for Pytorch
resulted in non-trivial solutions.

Addition of a scale factor
compromises accuracy, but
Mmakes solution faster.

Error Plot btw Tensorflow and
Pytorch (Scale 1) can be observed
in Slide 7
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Tensorflow vs. PyTorch

Investigation on Gradients

Update Date: 27 June, 2023



Tensorflow: Adam Initialization

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details,
and for a slightly more efficient (but less clear) order of computation. g7 indicates the elementwise
square g; © ¢;. Good default settings for the tested machine learning problems are o« = 0.001,
By = 0.9, B2 = 0.999 and ¢ = 10~%. All operations on vectors are element-wise. With A% and 35
we denote 3, and 35 to the power .

Require: «: Stepsize
Require: 3, 3; € [0,1): Exponential decay rates for the moment estimates
Require: f(f): Stochastic objective function with parameters
Require: #;: Initial parameter vector
mg + 0 (Initialize 1 moment vector)
g + 0 (Initialize 2™ moment vector)
t « 0 (Initialize timestep)
while &; not converged do
te—t+1
g + Vo fi(6:_1) (Get gradients w.r.t. stochastic objective at timestep )
It L1 1 —1 = P1) Ot 5 : :
vy — PBo-vs_1 + (1 — Ba) - gf (Update biased second raw moment estimate)
iy + my /(1 — 3]) (Compute bias-corrected first moment estimate)
T + v /(1 — BL) (Compute bias-corrected second raw moment estimate)
0 + 0:—1 — - it/ (V/Tr + €) (Update parameters)
end while
return ¢, (Resulting parameters)

(Kingma et. al) https://arxiv.org/pdf/1412.6980.pdf
NYU

Parameters (theta) refers to the
elements in the weight and biases
matrices.

g, refers to the partial derivative of
the loss function w.r.t. To the
weights (w)/biases (b) at time't.

OL OL

6Wt 6bt
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https://arxiv.org/pdf/1412.6980.pdf

First Study: Observation btw Tensorflow and Pytorch

Both platforms initialize the moment estimates as:

mt = [O]r Vt = [O]

A [4,1,1] Neural Network was created:

Both Pytorch and Tensorflow were initialized with the same weights and biases

After one epoch (t=1), the weights between the input layer and the first hidden layer (one
neuron) were extracted for comparison.

oL
After one epoch, the gradients ( — ) computed to derive these weights were also
extracted for comparison.

Using this gradient, the weights at t=1 were calculated on MATLAB using the
mathematical formula from the paper (Kingma et. al). Maximum error of each platform’s
weights at t=1 was -0.003%.

Hypothesis: The result show that the differences in the weights (or biases) after one
iteration can be attributed to different gradients being computed in Tensorflow and
Pytorch.



TENSORFLOW

Weights(t=0) Tensorflow Weights(t=1) Weights(t=1) Error(%)
Gradients Calculated from MATLAB Calculated from Tensorflow
0.88782865 1.1028266E+00 0.88682865 0.88682866 0.000
0.06018033 -6.1464891E+00 0.06118033 0.06118033 0.000
-0.46538195 -6.9716954E-01 -0.46438195 -0.46438196 0.000
-0.49303034 -2.0500580E-05 -0.49203083 -0.49204552 -0.003
PYTORCH
Weights(t=0) Pytorch Weights(t=1) Weights(t=1) Error(%)
Gradients Calculated from MATLAB Calculated from Pytorch
0.88782865 1.5916174E-02 0.88682865 0.88682866 0.000
0.06018033 2.2873601E-01 0.05918033 0.05918033 0.000
-0.46538195 2.9203158E-02 -0.46638195 -0.46638194 0.000
-0.49303034 7.0351894E-07 -0.49401632 -0.49401632 0.000




Second Study: Observation btw Tensorflow and Pytorch

Next Study:
e For a [4,4,1] Neural Network with same initial weights & biases
e 50 epochs

Method

e For each iteration, the gradients of weights and biases computed in Tensorflow for each
iteration were saved.

e Inthe source code of Pytorch Adam Optimizer, these Tensorflow gradients were used in
place of the gradients computed.

Results:
e When the gradients were set to be the same, we obtained the same weights for the first 3
out of 4 rows of weights with extremely close values in the fourth row.

e When the gradients were set to be the same, we obtained the same biases throughout.

NYU 2



Initialization

At It O:

Same
Weights and
Biases

At It O:

Initialized
with Same
Weights and
Biases

NYU
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Tensorflow Epoch: 50

PyTorch Adam Training Epoch:50

1.00 1.00
At It 50:
° 0 0.75 0.75
With Platform
[ ]
(Different) 050 o0
Computed 1 0.25 0.25
Gradients % 000 % 000
2 -0.25 -0.25
Sllg ht deviation 0550 050
in all cells
3 -=0.75 -=0.75
-1.00 -1.00
0 1 2 3 0 1 2 3
Layer 1 Layer 1

Tensorflow Epoch: 50 PyTorch Adam Training Epoch:50

1.00

At It 50:
With Same
Gradients

0.75

0.50

0.81017

0.81017 0.25

0.00

Layer 0

Only difference

isin this row 023
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Layer O

0.81017

Tensorflow Epoch: 50

1.00

0.75

0.50

0.25

Layer O

1

PyTorch Adam Training Epoch:50

0.81017

Layer 1
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At It 50:
With Platform
(Different)
Computed
Gradients

Slight deviation
in all values

At It 50:
With Same
Gradients

Similar to at least
5sig fig

NYU
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Tensorflow vs. PyTorch

Investigation on Pytorch Adam Gradients and
Automatic Differentiation

Update Date: 9 July, 2023
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Investigation of Gradient Computation in Tensorflow and Pytorch

Problem Description: The past update showed that when the tensorflow values for the adam
optimizer gradients (g(t)) were set in pytorch, it produced almost similar results (last row for
the weights showed some deviation at 5 sig. fig.)

Therefore, as of now, the following values are the same:
e Initial Weights and Biases
e Adam Optimizer Gradients at every iteration

However, the values derived in the loss function were observed to be different despite being
mathematically similar due to differences in the derivatives calculated.

Current Loss Function:

Loss = \/Z(Residualpm)z + \/Z(ResidualpDEBCSlrb)z + \/Z( ReSiduaIPDEBCSbﬂ,)Z

, 628nl 628111
Residualppr = € — 9 52 + 577 — &

31
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Experiment 1

1. A 4,11, Neural Network was created and initialized with the same weights and biases.
Adam Training was run for 5000 epochs.

1. Only one set of inputs were used:
data: [X, Y, g, elocal] = [2, 3, 8, 5]

1. Loss function was simplified to not include differentiation.
enon_local_true =11

2
Loss = (gnon local pred ~— €non local true)

1. The maps of the weights and biases (between the input layer and hidden layer) were
printed for every 1000 epochs following these 2 procedures:
a. First Method: Each program was allowed to generate maps and predictions using
the Adam Optimizer Gradients of that program

b. Second Method: The Tensorflow Adam Optimizer Gradients (g(t)) were set in
Pytorch




Experiment 1: Method 1

Method 1: Tensorflow and Pytorch were allowed to generate maps and predictions using the

Adam Optimizer Gradients of that platform.

After 5000 epochs, the weight contour map was generated between the input layer and

hidden layer:

Tensorflow Epoch: 5000

Layer 0

00
0.75 .
0.50 .
0.25 .
o
0.00 Q9 .
8
0 79373 -0.25 0 79373
-0.50
-0.75
-1.00
Layer 1 Layer 1

Weights Contour Maps (Same values)

PyTorch Adam Training Epoch 5000

0.75

0.50

0.25

-0.25

—0.50

-0.75

-1.00

o

Tensorflow Epoch: 5000

0.29282

Layer 1

0.100

0.075

0.050

0.025

0.000

=0.025

-0.050

-0.075

-0.100

o

PyTorch Adam Training Epoch:5000

0.29282

Layer 1

Biases Contour Maps (Same values)

0.100

0.075

0.050

0.025

0.000

=0.025

-0.050

-0.075

-0.100
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Experiment 1: Method 2

Method 2: The Tensorflow Adam Optimizer Gradients (g(t)) were set in Pytorch

After 5000 epochs, the weight contour map was generated between the input layer and
hidden layer:

Tensorflow Epoch: 5000 | oo PyTorch Adam Training Epoch 5000

0.75 0.75
Tensorflow Epoch: 5000 0100 PyTorch Adam Training Epoch:5000 0100
0.50 0.50 0,075 0.075
0.050 0.050
0.25 0.25 0.025 0.025
0.000 0.000
0.29282 0.29282
~0.025 ~0.025
0.79373 -0.25 0.79373 -0.25 e oo
-0.075 -0.075
_050 _050 g -0.100 2 -0.100
Layer 1 Layer1
-0.75 -0.75 .
Biases Contour Maps (Same values)
-1.00 —1.00

Layer 1 Layer 1

Layer O
Layer 0

Weights Contour Maps (Same values)



Experiment 1: Discussion

1. Inthissimple neural network, the same biases and weights were computed in Pytorch
despite the method used in training the networks (Method 1vs Method 2).

1. The Predictions derived were also
similar as shown here:

1.  For further analysis, the Adam
Optimizer Gradients for each neural
network was extracted at 5000
epochs and compared.

NYU

Tensorflow Pytorch Error (%)
Predictions Predictions
Method 1 8.3652573 8.3652334 0.00029
Method 2 8.3652573 8.3652229 0.00041
Tensorflow Pytorch Gradients | Error (%)
Gradients
Weights -8.28680E-04 -8.28680E-04 0.0000
-1.24302E-03 -1.24302E-03 0.0000
-3.31471E-03 -3.31473E-03 -0.0006
-2.07170E-03 -2.07171E-03 -0.0005
Biases -4.14340E-04 -4.14340E-04 0.0000




Experiment 2

1.

The results of experiment 1 hinted that the Adam Optimizer functions of both
Tensorflow and Pytorch are correctly executing the same mathematical formula.

| returned to the loss function below and decided to print out the values of the
variables that comprise the function to note differences.

Loss = \/Z(Residualpm)z + JZ( ResidualPDEBCSlrb)z + JZ( ReSidualPDEBCsbtb)z

525?“ 625711
+— ] — €]
Sx2 Sy?

Residualppr = €, — g(

SSM
5x

65nl
8y

ReSldualPDEBCSl-rb - ’ ReSldualPDEBCSbtb =

To obtain results, a 4,1,1, Neural Network was created and initialized with the same
weights and biases. Adam Training was run for 5000 epochs.

Only one set of inputs for each file was used:
data: [x, Yy, g, elocal] = [0.5, 0.5, 8, 1.4 E-006]
data_lrb: [x,y, g, elocal] = [0, O, 8, 1.8 E-006]
data_btb: [x,y, g, elocal] = [0, O, 8, 1.8 E-00]



At Adam Epoch =1

Description of Variable

Tensorflow Values

Pytorch Values

Adam Predictions

6.690440E-01

6.690439E-01

dee/dxx Second-order derivative of nonlocal strain -2.019621E-06 0
prediction w.r.t. the x-coordinate

dee/dyy Second-order derivative of nonlocal strain -2.992257E-06 0
prediction w.r.t. the y-coordinate

de/dx First-order derivative of nonlocal strain prediction 2.078373E-06 0
(Irb nodes) w.r.t. the x-coordinate

de/dy First-order derivative of nonlocal strain prediction 0

(btb nodes) w.r.t. the y-coordinate

-2.529810E-06

Loss (Python)

6.690874E-01

6.690425E-01

Loss (MATLAB)

6.690873E-01

6.690425E-01

Error Check (%)

-0.00001

0




At Adam Epoch = 5000

Description of Variable

Tensorflow Values

Pytorch Values

Adam Predictions

2.009869E-04

-3.733933E-04

dee/dxx Second-order derivative of nonlocal strain -1.084453E-09 0
prediction w.r.t. the x-coordinate

dee/dyy Second-order derivative of nonlocal strain -9.466578E-09 0
prediction w.r.t. the y-coordinate

de/dx First-order derivative of nonlocal strain prediction 4.657715E-09 0
(Irb nodes) w.r.t. the x-coordinate

de/dy First-order derivative of nonlocal strain prediction -1.376145E-08 0

(btb nodes) w.r.t. the y-coordinate

Loss (Python)

1.996897E-04

3.747933E-04

Loss (MATLAB)

1.996897E-04

3.747933E-04

Error Check (%)

-0.00001

0




Experiment 2: Discussion

The automatic differentiation in Pytorch is yielding zero values.

Below shows that the weight and bias maps for Tensorflow and Pytorch deviated at 5000
epochs despite being initialized with the same values.

Tensorflow Epoch: 0 100 PyTorch Adam Training Epotl:%:OO Tensorflow Epoch: 50001 o0 PyTorch Adam Training Epochl:%goo
0.75 0 0.75 0 0.75 0 0.75
0.50 0.50 0.50 0.50
0.25 1 0.25 1 0.25 1 0.25
o o o o
o 0.00 g 0.00 g 0.00 g 0.00
@ @ @© m©
- - - -
24 082671 —0.25 24 o0.82671 —-0.25 24 1.06797 -0.25 2 -0.25
—0.50 ~0.50 —0.50 —0.50
3 -0.75 3 -0.75 3 —0.75 3 —-0.75
-1.00 -1.00 —-1.00 —1.00
Layer 1 Layer 1 Layer 1 Layer 1



Next Steps

Research Question:
e Could the Pytorch automatic differentiation be responsible for different weights and
biases contour maps?

Possible Next Steps:
e While leaving Pytorch Adam Gradients untouched, | would input the derivatives from
Tensorflow into Pytorch to see if it would now yield similar maps and predictions.
e Readonline on errors encountered with pytorch automatic differentiation that yielded
zero values.
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enonlocal_grad_xy_GP self.enonlocal_gradient(enonlocal_pred_GP, self.X_TrainingData_StrBlee_GP)
enonlocal_grad_xy_nodeslrb self.enonlocal_gradient(enonlocal_pred_nodeslrb, self.X_TrainingData_StrB10@_nodeslrb)
enonlocal_grad_xy_nodesbtb self.enonlocal_gradient(enonlocal_pred_nodesbtb, self.X_ TrainingData_StrB1@@_nodesbtb)

def enonlocal_gradient(self, enonlocal, X):

denonlocal_dinput = torch.autograd.grad(enonlocal, X, grad_outputs=torch.ones_like(enonlocal), \

create_graph=True, retain_graph=True, allow_unused = True)[@]
enonlocal grad xy = torch.empty((len(X), self.Nincr, 2))
enonlocal _grad xy[:,:,0] denonlocal_dinput[:, :, 0]
enonlocal grad xy[:,:,1] = denonlocal dinput[:, :, 1]

print(denonlocal_dinput)
print(enonlocal grad_xy)
print("\n")

return Jenonlocal _grad_xy
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tensor([[[ ©.03503, -0.02032, -0.00082, -0.01739]]], device='cuda:@'
grad_fn=<ReshapeAliasBackwarde>)
tensor([], size=(1, @, 2), grad_fn=<CopySlices>)

tensor([[[ ©.03432, -0.01991, -0.00080, -0.01704]]], device="cuda:@'
grad_fn=<ReshapeAliasBackwarde>)
tensor([], size=(1, ©, 2), grad_fn=<CopySlices>)

tensor([[[ ©.03432, -06.01991, -0.00080, -0.01704]]], device='cuda:@e'
grad_fn=<ReshapeAliasBackwarde>)
tensor([], size=(1, @, 2), grad_fn=<CopySlices>)

.}

.}

.
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enonlocal_gradient(self, enonlocal, X):

denonlocal_dinput = torch.autograd.grad(enonlocal, X, grad_outputs=torch.ones_like(enonlocal), \
create_graph= , retain_graph= , allow unused = )[@e]

return|denonlocal_dinput
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Tensorflow Epoch: 50001

Layer O

2

1.06797

Layer 1

.00

0.75

0.50

0.25

0.00

-0.25

-0.50

=0.75

-1.00

PyTorch Adam Training Epochl:%goo

Layer O

2

1.06794

Layer 1

0.75

0.50

0.25

0.00

-0.25

-0.50

=0.75

-1.00
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1. Documentation for tf.gradients() function -
https://github.com/tensorflow/tensorflow/blob/v2.13.0/tensorflow/python/ops/gradient
s iImpl.py#L172-L.315

1. Documentation for for torch.autograd.grad function -
https://pytorch.org/docs/stable/ modules/torch/autograd.html#qgrad
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https://github.com/tensorflow/tensorflow/blob/v2.13.0/tensorflow/python/ops/gradients_impl.py#L172-L315
https://github.com/tensorflow/tensorflow/blob/v2.13.0/tensorflow/python/ops/gradients_impl.py#L172-L315
https://pytorch.org/docs/stable/_modules/torch/autograd.html#grad
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